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3  Viscoplastic Impact Modelling 

3.1 Introduction 

The interest in this chapter is on how to model impacts in space, using a method which shall 

describe the interaction between different materials, compliant and non-compliant, retaining a high 

level of fidelity. The answer to this question is important, because a well-established model is 

necessary for the accurate representation of impacts on simulations. As in Sec. 1.4.1 has been 

already explained, the impacts can be modelled via three methods: the stereomechanical theory 

method, the Finite Element Method (FEM) and the compliant/viscoelastic approach. Each method 

has its pros and cons but the use of the viscoelastic methd seems more appropriate, as the impact 

between different materials can be described by lumped parameter models with suitable 

characteristics, [145]. There are various models in the literature with more prominent the Hunt-

Crossley (HC) model, [76]; in fact the majority of the viscoelastic models use the HC model as a 

basis and will be also the basis for this work; however this is just a matter of choice. The HC 

model of Sec. 2.2.4, is repeated here. It is reminded that the interaction force Fg  is, 

 
 
Fg yg , !yg( ) = kg ⋅ ygn + bg ⋅ !yg ⋅ ygn   (58) 

In Figure 3-1 the shape of a typical HC impact is given. The area inside the curve is the 

non-recoverable energy which is dissipated during the impact inside the materials under impact, 

due to mechanisms like internal vibrations and local plastic deformations. 

 

Figure 3-1. Typical Interaction Force – Penetration Depth diagram using HC method. 
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However, the behaviour of real materials is somehow different according to the 

experimental results in the literature. In Figure 3-2 - Figure 3-4 the experimental results for force 

vs penetration depth is given for various materials and surfaces. In the case of Figure 3-2 the 

pressure is static due to the Bevameter measurement technique. Therefore after each restitution, the 

compression phase follows almost the previous restitution phase. However it is obvious that the 

surface due to compaction retains a permanent depth and it does not return to its initial height. 

During the second pressurization phase (BCD) the materials deform almost from the depth the first 

pressurization phase ended. Thus the interaction on deformable terrains cannot be represented 

realistically by methods like HC. The problem is that in a terramechanics approach, like when 

describing the behaviour of a surface using the Bevameter technique, it is assumed that an 

equipment (or a wheel or a foot) is in touch with the ground for considerable amount of time, or 

even permanently. This approach cannot be applied in the case of impacts which are inherently 

fast. It is reasonable to assume that during impacts, time dependent phenomena, such as creepage, 

have negligible effect compared to the inertia and interface stiffness or damping effects. However 

the plastic deformations, which occur to one or both of the interacting bodies, play an important 

role. 

  

(a) (b) 
Figure 3-2. Response to repetitve normal load of (a) a mineral terrain, and (b) Petawawa Muskeg A, [162]. 

In Figure 3-3 the experimental results of the impact of a metallic sphere on various 

materials are shown. Again the qualitative similarity of the HC model is apparent, however the HC 

model fails to predict the permanent deformation analytically. Finally in Figure 3-4, the force-

penetration depth of a foot (a two-body system) is presented where a recompression phase is 

acknowledged [83]. However this phenomenon is only observed but not described analytically in 

that work. 
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(a) (b) 

Figure 3-3. Force-Identation Response of a metallic sphere impacting a (a) composite half-space and (b) 

rigidly supported thin laminate, [101]. 

 

Figure 3-4. Experimental result of a two-body system penetrating a surface (foot-terrain interaction), [83]. 

In order to tackle the issues that other impact descriptions have, in this chapter a novel 

impact model is proposed and developed which has viscoplastic characteristics. This viscoplastic 

model shows very good correlation with experimental results found in the literature and it can 

efficiently describe a large number of interactions that occur in robotics, not only in space but also 

in terrestrial applications. At the same time a parameter named Coefficient of Permanent 

Deformation has been introduced, which describes the deformations that can occur on a 

viscoplastic material, taking into account complex behaviours like compaction and cratering. An 

earlier work which employs the demonstrated approach in this work and its potential is in [92]. It 

has been proved that the proposed viscoplastic model represents more accurate this kind of 

interactions and the generallity of its application in viscoplastic impacts applies not only in impacts 

in space but it can be used similarly in other areas of robotics, [154] - [156]. 
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3.2 Model Rationale 

In viscoelastic models, in order to describe an impact, lumped parameters (fictional springs and 

dampers) are used which are located in the interface between the bodies under impact. Let an 

impact between two bodies, which is defined by a viscoelastic model, such as the HC, Figure 

3-5a. During compression, both the interaction force Fg  and penetration depth yg  increases, while 

the relative velocity  !yg  between the bodies decreases. When this velocity is zeroed, i.e.  !yg = 0 , 

the maximum compression yc,max  has been reached. Note that generally, the maximum force 

appears before the maximum compression due to intrinsic model non-linearity, [145]. During 

restitution, the relative velocity between the bodies increases, but in the opposite direction, while 

the depth and the interaction force decrease. The restitution ends when both the depth and the 

interaction force are zeroed, but in fact this is due to the closed form of the models. The key event 

characterizing the end of the impact is that the interaction force is zeroed, i.e. there is no more 

contact between the impacting bodies. In other words, existing viscoelastic models implicitly 

assume that the impact starts and ends (e) at yg = ye = 0 , i.e. that no permanent deformation 

ye ≠ 0  occurs. However, due to the permanent deformation on a nonideal deformable impact 

interface, the impact bodies clear the interface at ye > 0 ; this has an effect on the final elongation 

of the (fictitious) spring and the energy lost due to the permanent deformation. In addition, in 

viscoelastic models, the behavior of a material under repetitive loading at the same point, or 

compaction, is ignored. In fact, experimental results as for example in [29], reveal that viscoelastic 

models do not describe accurately deformation of materials in contact, validating this proposition. 

Hence a model that takes into account such deformations is needed. 

 

Figure 3-5. Impact models (a) Standard viscoelastic and (b) Proposed viscoplastic. 

(a) Impact Using Common Viscoelastic Models

(b) Impact Using Proposed Viscoplastic Model
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The strict viscoelastic description of the process can be extended in the case of plastic 

deformations via appropriate lumped elements to result in a viscoplastic description. Here, a model 

that treats the impact piecewise is developed, as shown in Figure 3-5b. According to this model, 

the compression phase is the same to that in the viscoelastic case. During this phase, part of the 

energy is stored in the (fictitious) spring, which represents the interaction stiffness, another part is 

dissipated through material internal losses represented by damping bg , and the remainder is 

dissipated during bodies’ shape deformation, e.g. due to cratering around the impact point or 

compaction. As restitution is reached, the material in the direction of motion has been displaced 

due to the deformation, and/or the interface becomes stiffer because of compaction. Also, the 

interaction spring cannot be extended to its initial length, corresponding to ye = 0 , but to a shorter 

length corresponding to a new lower level with ye > 0  with respect to the undeformed interface. 

As the interaction force will be zero at this new free length of the spring, it follows that this new 

fictitious spring is shorter and stiffer. Thus there is memory for the phase between compression 

and restitution; this memory will be described by a piecewise equation. 

3.3 Proposed viscoplastic model. 

In order to mathematically describe the model it is necessary to define the term impact instance. 

An impact, as it has been already presented in Sec. 2.2, is a process which includes the phases of 

compression (c) and restitution (r), which occur at an impact point. Each pair of compression and 

restitution on the same impact point is an impact instance. Strictly speaking, an impact terminates 

when there is no contact between the bodies under impact, thus when the interaction force Fg = 0 . 

Therefore an impact may consist by one or more compression-restitution pairs until it is 

terminated; thus an impact may consist by one or more impact instances. 

Based on the above, the interaction force Fg  at an impact instance i  can be described by, 

 

 

Fg,i yg , !yg( ) =
Fc,i = λc,i ⋅ kg + bg ⋅ !yg( ) yg − ye,i−1( )n , !yg ≥ 0
Fr ,i = λr ,i ⋅ kg + bg ⋅ !yg( ) yg − ye,i( )n , !yg < 0

⎧
⎨
⎪

⎩⎪
 (59) 

where subscript c  stands for compression, r  for restitution, ye  is the final penetration depth, and 

the index i  identifies the impact instance, see Figure 3-5. As the interface between the bodies 

under impact inherits characteristics from the previous instance, during successive impacts at the 

same point, the Coefficient of Permanent Deformation λ  is defined in recursive form as, 
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λc,i =
1, i = 1

λr ,i−1, i >1, i ∈!

⎧
⎨
⎪

⎩⎪

λr ,i = λr ,i materials, velocity, i( ), i ∈!

 (60) 

Since the fictitious spring is stiffer during restitution than in compression, λr ,i ≥ λc,i ≥1 . The 

equality λr ,i = λc,i  holds when the interface cannot be compressed further; then (59) reduces to an 

HC model with the same start and end point. As a demonstration, Figure 3-6 illustrates the impact 

force as a function of the penetration depth yg  for various fixed values of λ  as described by (59), 

in the case of a 1kg  ball falling with zero velocity from a 0.5m  height to a surface with 

kg = 8 ⋅10
4 N m . Note that with λ  increasing, the permanent deformation increases, even though 

the compression phase is the same. The area under the curve corresponds to interaction losses; 

these increase with λ . In Figure 3-7, the distribution of the energy dissipation is presented. The 

areas below the two HC curves (compression and restitution) represent the dissipation due to 

internal losses, as in Figure 3-1. The triangled-shaped area, of which the sides are described by the 

non-linear springs of each phase in (59), represents the energy loss due to the permanent shape 

deformations. 

 

Figure 3-6. Impact curves for the proposed impact model (59) for various λ . 
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Figure 3-7. Energy dissipation as depicted in the impact curve. 

Parameters for various materials or soils can obtained easily from the literature, e.g. [29], 

[58] and [71]. However, usually the experiments that yield these parameters are of static nature, 

e.g. for soils this is achieved using the Bevameter technique (such as the cohesion), which may not 

be adequate for dynamic impacts.  

Generally, as the same contact area is compressed, it becomes stiffer. Thus after a number of 

impacts at the same point, its stiffness eventually reaches a critical limit. To model this increasing 

stiffness, the following function is proposed, 

 
 
λr ,i = 1+ a i( ) ⋅ 1− e− i⋅β i( )( ), i ∈!   (61) 

where a(i)  and β(i)  are functions of the impact instance i , of the materials and of the velocity. 

Note that if a i( ) = 0  or β i( ) = 0 , (59) reduces to the HC model. Parameter a  sets the maximum 

value of λr ,i , whereas an increase in β  increases the speed to reach this value, i.e. fewer impacts 

at the same point are needed to reach the critical value, as shown in Figure 3-8. Apparently as the 

impact instance is a discrete value, λr ,i  has also discrete values. 

The final depth ye,i  after the ith  impact can be calculated by observing that at the maximum 

compression yc,max,i  there is force continuity, while the interface velocity is zero, i.e. 

 
 
yc,max,i ⇔ Fc,i = Fr ,i and !yg = 0   (62) 

Using (59) and (62) one can deduce that 

 ye,i = yc,max,i ⋅ 1− λc,i λr ,i
n( ) + ye,i−1 ⋅ λc,i λr ,i

n( )   (63) 
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Figure 3-8. Change of the Coefficient of Permanent Deformation after each impact using (61) for various 

a i( )  and β i( ) . The values are discrete. 

where ye,0 = 0  for consistency. 

3.4 Recompressions, rebounds, and hard impacts. 

It is interesting to study the impact behavior of the two-body system in Figure 3-9, while it falls 

vertically (it has the same behaviour with a system which hits horizontally another system or wall) 

where the lower mass is lighter than the upper mass. When the lower mass comes into contact with 

the interface, the direction of the velocity of the system CoM is downward. The phases of 

compression and restitution occur, Figure 3-9a and Figure 3-9b; during restitution the lower mass 

may or may not clear the interface, Figure 3-9c. However the upper mass due to its larger inertia 

and system compliance, continues its downward motion and thus the forces which are applied on 

the lower mass by the spring (and damper) and the interface interaction can become equal in 

magnitude before the direction of the velocity of the system CoM is reversed. This will start a 

“recompression” phase (impact instance i +1  for this interface point), Figure 3-9d. The process 

can be repeated a number of times until the two-body system as a whole clears the interface and at 

the same time the direction of the velocity of the system CoM becomes upward; only then the 

impact is considered over. 

Therefore the possible cases during an impact of the two-body system of Figure 3-9 are: 

i) After the ist restitution, m  has cleared the interaction surface (whether it is the initial depth 

or a surface compressed to ye,i ) and its velocity is upward. Thus Fg = 0 . If the CoM of the system 

continues its downward motion, the phenomenon is a rebound. Another impact instance i +1  will 

take place. 
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Figure 3-9. Description of recompression for a falling 2-body system where Fg  is the interaction force and 

Fk  is the spring force: (a) Initial contact, (b) Compression, (c) Restitution and (d) Recompression. 

ii) After the ist restitution, m  has not cleared the interaction surface (whether it is the 

initial depth or a surface compressed to ye,i ). Thus Fg ≠ 0  and the CoM of the 

system continues its downward motion. In this case the phenomenon is a 

recompression. Another impact instance i +1  will take place. 

iii) After the ist restitution, m  has cleared the interaction surface (whether it is the 

initial depth or a surface compressed to ye,i ) and its velocity is upward. Thus 

Fg = 0 . If the CoM of the system has also an upward motion, the impact has been 

terminated. No other impact instance will take place. 

As an application of this behaviour, the interaction force versus the penetration depth is 

presented in Figure 3-10 for a two-body system which impacts a very stiff ground 

(kg = 10
6 N m) , where the upper and lower masses are 4kg  and 0.1kg  respectively, the 

distance between them is 0.30m  and the spring stiffness is k = 12,000N/m . For demonstration 

purposes, (61) is used with a = 0.5  and β = 1 , corresponding to a very stiff surface, which can be 

deformed plastically to some small degree. The system falls from a height of 1cm  with zero initial 

velocity. As it can be seen in Figure 3-10, a number of compression and restitution phases are 

observed before the interaction force is zeroed. The remaining compression is about 0.45 mm. 

On the other hand, a rebound is completed when the lower mass clears the ground; more 

than one rebounds can occur during a single impact phase. Figure 3-11 illustrates the characteristic 

behavior for two different impacts. In the first impact, the lower body undergoes a number of 

successive recompressions, without clearing the surface; thus no rebound occurs. In the second 
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impact, clear of the surface by the lower body occurs, but the velocity direction of the CoM is 

opposite to the velocity direction of the lower mass; thus a rebound occurs.  

 

Figure 3-10. Impact curve for a case with 5 recompressions. 

The observations are very intersting for a robotic system, as for example in the case of foot-

terrain interaction. A force sensor is used often in legged robots to establish the transition from 

stance to flight and vice versa, so it is possible that the sensor signals can mislead the controller; 

therefore this behavior must be taken into account in the controller design. Otherwise, flight and 

stance controllers will be switched on and off very fast, resulting in poor response or even in 

eventual loss of stability, especially when the impacts are between stiff bodies, [102]. 

 

Figure 3-11. Stance instances with recompressions and rebounds. 
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3.5 Discussion on the proposed viscoplastic model 

Let now examine the qualitative results of using the proposed viscoplastic model. Let again the 

case of a 1kg  ball falling to a surface with kg = 8 ⋅10
4 N m , but this time the velocity just prior 

to impact is 2m s  and this time the interaction damping characteristics and the Coefficient of 

Permenanent Deformation λ  are changing, Figure 3-12. As the damping characteristics are 

relatively low, and the Coefficient of Permenanent Deformation is unity, the absolute velocity after 

restitution is almost equal to the absolute velocity before the impact; the impact is almost elastic. 

By increasing the damping characteristics of the surface – that is the dissipation due to damping is 

increased – the absolute velocity is reduced. Using (9), it is easy to determine the coefficient of 

restitution equal to 0.475. However when the damping characteristic is retained but the Coefficient 

of Permenanent Deformation is increased the behaviour is different; the compression phase is 

similar to the previous one but the impact finishes earlier, and the final velocity is reduced further. 

The coefficient of restitution can be calculated again by (9) equal to 0.275; energy has been 

dissipated not only in the interior of the surface, but also the plastic deformation (designated by the 

Coefficient of Permenanent Deformation) reduced further the ball’s final velocity. 

 

Figure 3-12. Qualitative difference between viscoelastic model and proposed viscoplastic model. 

Note that in any case, the actual penetration depth as a function of the interaction force 

depends not only on the materials and the initial impact velocity, but also on the relative stiffness 

of the system with respect to the surface and the system mass ratio. 

Summarizing, the proposed model: 

(a) has advantages over similar models like KV, HC, or those presented in [6], [82], [83], 

[162]. The model can both describe accurately the impact between two compliant bodies but it can 

also be used for repetitive loading of a particular contact point by increasing the impact instance 
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index i  for this particular contact point. A special case of repetitive loading occurs when the 

impacting body is a multibody system where recompression may occur, 

 (b) is numerically stiff. Depending on the complexity of the problem to solve, high accuracy 

in ODE solvers may be required, 

 (c) uses the HC model as a basis in (59), but this is purely a matter of choice; the core idea 

of the developed model is also applicable to other viscoelastic models, 

(d) proper selection of λ  can describe complex interaction phenomena like compaction and 

cratering, and. 

(e) experimental results in the litarture, prove that the proposed model has qualitatevily 

similar results, see Sec. 3.1. The exact figures for the stiffness/damping characteristics of many 

materials and surfaces can be found in the literature, like in [101] and [162]. 

The pseudocode of the algorithm of the impact model can be found in Appendix D. 
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4 Analyzing Impacts Between Multibody Systems 

4.1 Introduction 

In this chapter the interest lies on how the mass and stiffness characteristics of systems under 

impact affect the impact in a gravity-free (zero gravity) environment. Initially, the standard 

approach during modeling of impact docking is presented and it is shown that this approach lacks 

on accounting the effects of inertia and stiffness of the system of masses that come into contact. A 

more generalized approach in modeling this free-floating impact by using computationally fast 

methods stemming from the rigid-body theory is developed. One important result here is that the 

effect of the mass ratio of the multibody systems under impact is quantified. This quantification is 

achieved using an analytical proof of the effect of mass ratios during impact of multibody systems. 

This resulted to a better understanding on the behaviour of multibody systems in zero-gravity 

during impacts. In line with this, the Ratio of Effective Masses is introduced, which can efficiently 

describe the behaviour of multibody systems under impact, taking into account all the masses of 

the impact. By using this term, a fast but accurate way to assess the post-impact relative velocity 

knowing only the pre-impact relative velocity is presented. Additonally using ths ratio, it can be 

determined whether the impact of two systems can lead to a further approach or separation. Thus, 

in this chapter, an analytical method for fast determination of the behaviour of multibody systems 

under impact is developed and it is used in order to define whether the conditions for a successfull 

docking/ capture exist. Part of this work has been presented in [126]. 

4.2 Model Development 

4.2.1 Discussion on Models to Describe Impact Docking  

Usually the model used for the impact during docking is 1-D due to the fact that the salient 

information of the impact can be described in this way, [35], see Figure 4-1. The problem with this 

model is the fact that on part of the system, or for both systems, one or more bodies can be 

replaced by a fictional wall. This is near the reality if and only if a body has a very large mass 

comparing to the others. For example this model is near to reality in case the Target is the ISS. 

However as the bodies under impact have comparable masses, this simple model fails to represent 

the reality. This is especially true if we consider impacts during docking between satellites (e.g. in 

a on-orbit servicing scenario) or the capturing of a space debris by a space robot. 

A more generic model for the Chaser and the Target CoMs when moving along the same 

axis is shown in Figure 4-2. Both systems are modelled as two masses connected with a (in 

general non-linear) spring and a (in general non-linear) damper. This may seem as an 
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oversimplification, especially when the Chaser, the Target or both, are n-body systems; however 

according to the assumptions of Sec. 2.2.2, during the short duration of an impact, the systems can 

be regarded as quasi-static. In this approach, it can be regarded that the Chaser is a combination of 

a mass which resembles the base and some of the links which have locked joints or very high 

stiffness comparable to a joint which connect a probe (and perhaps some more links), which are the 

mass. In a similar way the Target, can be regarded as one base with a latching mechanism (or 

drogue), connected via a spring and a damper. In other words, what interest is the first 

eigenfrequency that corresponds to two masses and a spring for each system, Chaser and Target. 

 

Figure 4-1. Classic modelling of docking impact procedure. 

 

 

Figure 4-2. Generic model of impact between two free-floating systems. 

Specifically, if the free body diagram is analyzed, one can see the main equations of motions 

for all masses of this system. Unfortunately, the absence of a fictious wall as in the classic analysis, 

makes the problem more difficult to analyze. In order to select the proper model for the docking 

impact, it is necessary to discuss the parameter of the model to pinpoint its characteristics. In this 
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discussion the 1-D models shall be examined, as they form the basis for any subsequent analysis in 

2-D or 3-D: 

4.2.2 Discussion on the Stiffness Characteristics 

In many cases in the literature, it is usual to consider the probe front-end as a small mass, which is 

ignored. However this is not realistic: As the front-end comes into contact with the Target, the 

impact occurs between these two bodies (the small mass and the target). Higher impact frequencies 

are excited than in the case in which the small mass is neglected. Thus the masses cannot be simply 

ignored, as in reality they are the main reason for energy interaction between the Chaser and the 

Target. Therefore a question is eminent: which is the mass ratio that defines the model to be used 

during impacts? 

As Stronge and other researchers suggest [145], when there are multiple impacts between 

multiple masses, like in the case of the 2 two-bodies we examine, the ratio between the spring 

constants between the masses and the spring constant which represents the interaction between the 

bodies under impact play an important role. On main issue which arises, is whether the impacts can 

be considered sequential or simultaneous. Generally, if the magnitude of the spring constant which 

represents the impact is much higher than the spring constants between the bodies of the Chaser 

and the Target, the impacts are simultaneous. In more detail, as the ratio of the impact stiffness to 

the internal stiffness of the bodies is larger than one order of magnitude, the impact characteristics 

(maximum force, duration) are governed by the stiffer spring, which in this case is the fictional 

spring between the masses under impact. 

The first question is how realistic is this in the case examined, that is the impact between the 

2 two-body systems in space. It is reasonable to assume that the spring constant developed between 

the bodies under impact, ki , is far larger that the springs between joints. Indeed, see Sec. 2.2.6, a 

typical spring constant between two metallic surfaces can be high enough (more than some 

hundred thousands for this case), whereas a typical spring constant created by a joint (either using 

a spring or a motor) is much lower – except of course it is a locked joined. 

The second question is what happens as the ratio is lower than one order of magnitude. In 

other words what happens as the spring constants ki  and kc  or kt , are similar. The following 

cases exist: (1) The spring constant between the masses of the Chaser and the Target are larger 

than the fictional spring constant ki  for at least one order of the magnitude. In this case one can 

consider that the Chaser is two masses rigidly connected. (2) If we remove the masses under 

impact as very small, then the total spring constant can be evaluated using Eq. (200). In other 

words we can model again the systems as a two mass system connected with an equivalent spring. 

(3) In case that all spring constants are of the same order of the magnitude then the viscoelastic 
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analysis is necessary. However until now an analytical solution is difficult to be found for more 

than 3 interconnected bodies, and FEM analysis may be necessary. Hopefully this is not a case of 

interest, as it is completely unrealistic with respect to this problem; the impact is usually between 

metallic elements, therefore ki  is much larger than kc  or kt . 

4.2.3 An n-multibody system modelled as a 2-body system 

The impact docking has mainly to do with systems where the probe-drogue mechanisms are not 

connected to appendages (e.g. ATV docking on ISS), but in the more general case, it is assumed 

that they are attached to manipulators, (i.e. configurable appendages). By reference to Figure 4-3a, 

suppose that the probe and drogue are both connected to a manipulator, and each manipulator to a 

free-floating base. This can be simplified if examined as a 1-D case, see Figure 4-3b.  

 

Figure 4-3. Model rationale of impact docking between multibody systems: (a) concept and (b) free body 

diagram. 

With reference to Figure 4-3b, the Chaser is a two-body system, where mass, m1 , 

represents the Chaser body and mass m2 , its manipulator with the probe. These are connected via 

a lumped parameter system, (a spring and a damper), modelling the internal compliance of the 

system. Similarly for the Target, a system of two masses (m3  and m4 ) connected by lumped 

parameter elements is employed. Specifically for the 1-D case, the latching mechanism is regarded 

to be a spring-latch system, which is parallel or normal to the motion of the bodies under impact. 

This method of modelling is similar to known approaches such as those in [35] and [151]. This is 

the generic scenario which will be used in this work and is based on the current technology trends 

of Sections 1.2 and 1.3.  

Thus, it is useful to model the multibody systems under impact as 2-body systems; this 

approach is known as equivalent two-body system identification, [164]. That is an “n” multibody 
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system, under impact, can be modelled as a 2-body system with one body being equivalent to the 

first k  masses, and the second body equivalent to the rest n − k  masses, connected by equivalent 

spring/damper elements. The general case is shown in Figure 4-4. Let that a spae robot is 

comprised by a main body, some flexible appendages (e.g. antennas, solar panels) and a robotic 

manipulator with n −1  links. Without introducing large errors, we can ignore the small masses 

located away from the impact point and introduce a much larger mass is in the middle. 

Additionally the rest of the joints are locked, while a single joint remains able to rotate.  

 

Figure 4-4. Equivalence of a n-body system with a 2-body system. 

As it is known from mechanics the inertia characteristics can be calculated. For example the 

Center of Mass (CoM) of the n-body system is 

 rcm =
r1 ⋅m1+r2 ⋅m2 + ...+rk ⋅mk +rk+1 ⋅mk+1+ ...+rn−1 ⋅mn−1+rn ⋅mn

m1+m2 + ...+mk +mk+1+ ...+mn−1+mn

  (64) 

The CoM of the 2-body system is 

 rcm =
rBI ⋅mBI +rBII ⋅mBII

mBI +mBII

  (65) 

therefore 

 mBI ⋅rBI = mi ⋅rii=1

k
∑   (66) 
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 mBII ⋅rBII = mi ⋅rii=k+1

n
∑   (67) 

By incorporating this methodology it is possible to find an equivalent 2-body system for any 

multibody system. This will be useful in the next sections in order to determine whether an impact 

between two 2-body systems can lead to approach or to move away one from another. 

4.3 Rigid Multibody Impact Theory 

The common multibody impact models use techniques which are by design computationally 

expensive. Even though novel algorithms and increased computational power exist today, the 

computation of the impact behaviour of a n-body system takes time and is not favoured for the 

computer of a space system during operations which include impacts. 

For this reason the Rigid Multibody Impact Theory (RMIT) is proposed, [126]. The 

difference from other multibody impact models is that in this model the bodies are considered as 

whole systems (Chaser and Target) and as separate masses (two masses for the Chaser, two masses 

for the Target) simultaneously, see Figure 4-5. The idea behind this concept is based on Sec. 2.3.2. 

More specifically, let a multibody Chaser system of total mass mc  which can be equivalently 

substituted by two masses, m1  and m2 , connected by a spring kc  and a damper cc  representing 

the compliance at this point. Similarly, let a multibody Target system of total mass mt  which can 

be equivalently substituted by two masses, m3  and m4 , connected by a spring kt  and a damper 

ct  representing the compliance at this point. During impact the masses m2  and m3  come into 

contact first. That is the impact characteristics are inevitably connected with these two bodies. 

However at the same time, the impact occurs between the total masses of the two multibody 

systems, mc  and mt  which include the masses under impact m2  and m3 . In other words during 

an impact there is an interaction which exchanges energy between the masses under impact (m2  

and m3 ) as well as the total masses (mc  and mt ). During this analysis it shall be proven, that 

using equations of classical rigid body impact mechanics, one can predict the behaviour of the total 

systems after impact without large computational requirements.  

Four different effective masses are defined, see also Appendix A. More specifically, 

the effective mass of the total Chaser and Target systems (total system effective mass) is: 

 mi,ef =
mc ⋅mt

mc +mt

  (68) 

the effective mass of the bodies under impact (the masses that come first into contact) is 
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Figure 4-5. Concept for Multibody Contact Model. 

 µi,ef =
m2 ⋅m3

m2 +m3

  (69) 

and the effective masses of each of the Chaser and Target are 

 µc =
m1 ⋅m2

m1+m2

  (70) 

 µt =
m3 ⋅m4

m3+m4

  (71) 

Due to the impact instant “i” (see also 3.3 for the definition of the term impact instance), an 

impulse Pimp
i  is created, which by using the expression of impulse according to (17) for the model 

into consideration is  

 Pimp
i = 1+e*( )⋅Urel ,i

i− ⋅µi,ef   (72) 

where Urel ,i
i−  is the relative velocity of the bodies under impact prior to impact “i”, and e*  is the 

coefficient of restitution. Note that from now on, when the signs are used in superscripts they have 

the following meaning: “-“ represents a value just prior to impact and “+” represents a value just 

after the impact. The same impulse Pimp
i  is developed between m2  and m3 , and between mc  and 

mt , [78]. This understanding is critical to the rest of the analysis.  

Let now define the relative velocity between the systems Urel ,s
i±  before or after impact “i” 

(according to the sign) as, 

 Urel ,s
i± =Vc

i± −Vt
i±   (73) 

m1 m2 m3 m4

mc mt

ktkc ki

ci ctcc

Urel ,i
i−

Chaser Target
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where Vj
i± , j = c,t  is the absolute velocity of the Chaser (c) or Target (t) before or after impact 

instant “i” with respect to the same CS. Using (8) one can see that the following relationships 

apply, 

 Pimp
i = mc ⋅ Vc

i− −Vc
i+( )   (74) 

 −Pimp
i = mt ⋅ Vt

i− −Vt
i+( )   (75) 

due to action-reaction principle. Therefore the relative velocity of CoMs of Chaser and Target after 

impact is 

 

Urel ,s
i+ =Vc

i+ −Vt
i+ = Vc

i− −
Pimp
i

mc

⎛

⎝⎜
⎞

⎠⎟
− Vt

i− +
Pimp
i

mt

⎛

⎝⎜
⎞

⎠⎟
= Vc

i− −Vt
i−( )− Pimpi ⋅ 1

mc

+ 1
mt

⎛
⎝⎜

⎞
⎠⎟
⇒

⇒Urel ,s
i+ =Urel ,s

i− −
Pimp
i

mi,ef

  (76) 

Using (72) 

 Urel ,s
i+ =Urel ,s

i− −
Pimp
i

mi,ef

=Urel ,s
i− −

1+ e*( ) ⋅Urel ,i
i− ⋅µi,ef

mi,ef

  (77) 

Equation (77) shows that the relative velocity between the two multibody systems after impact is 

related to the relative velocity of the two multibody systems prior to impact, reduced by an amount 

which is related to the coefficient of restitution, the relative velocity between the bodies under 

impact (i.e. m2  and m3 ) and the way the masses of all bodies (m1,m2,m3,m4 ,mc ,mt ) are 

distributed. It is important that the difference of the two relative velocities Urel ,s
i−  and Urel ,i

i−  is clear: 

The first refers to the relative velocity of both masses mc  and mt , and the second refers to the 

relative velocity of the bodies under impact m2  and m3 . Generally these two relative velocities 

are not the same, for example in the case we examine, if m2  and/or m3  are oscillating with 

respect to their body frame CS{B}. In order for the equation Urel ,s
i− =Urel ,i

i−  to apply, two cases exist: 

a) There is no internal relative motion between the bodies of Chaser and between the bodies 

of Target. This means that the Chaser’s masses have the same velocity (and therefore the 

same velocity with their system CoM), and the Target’s masses have the same velocity 

(and therefore the same velocity with their system CoM). In the case examined this means 

that the internal springs of Chaser and Target are at their free lengths. This case is usually 

reasonable prior to first impact in a nominal approach scenario. 



PhD Thesis  Capture of Orbital Space Systems by Robots  Iosif S. Paraskevas 

CSL 91 NTUA - 2015 

b) In the case that another impact (i.e. not the first impact) occurs right at the point that both 

springs are at their free length. 

Therefore the relative impact velocity Urel ,i
i−  can be expressed as 

 Urel ,i
i− =Urel ,s

i− +δUrel
i−   (78) 

where δUrel
i−  is the relative difference of velocities between the impact bodies mass (m2  and m3 ) 

due to their motion within their systems (here in the form of oscillations), when the relative 

velocity of the systems has been subtracted. Using (77) and (78) one can find 

 

Urel ,s
i+ =Urel ,s

i− −
Pimp
i

mi,ef

=Urel ,s
i− −

1+e*( )⋅ Urel ,s
i− +δUrel

i−( )⋅µi,ef

mi,ef

⇒

⇒Urel ,s
i+ = 1−

1+e*( )⋅µi,ef

mi,ef

⎛
⎝⎜

⎞
⎠⎟
Urel ,s

i− −
1+e*( )⋅µi,ef

mi,ef

⋅δUrel
i−

  (79) 

Using the notation eI  for the ratio of effective masses between bodies under impact and total 

system 

 eI =
µi,ef

mi,ef

  (80) 

In essence the ratio eI  provides a metric of how much of the energy between two multibody 

sytems is transferred between the bodies which are directly under impact (thus m2  and m3 ) with 

respect to the energy transferred to the whole systems (thus mc  and mt ), due to their inertia 

characteristics. Combining with the coefficient of restitution in (79) 

 eI
* = 1+e*( )⋅eI   (81) 

one can write (79) as 

 Urel ,s
i+ = 1−eI

*( )Urel ,s
i− −eI

* ⋅δUrel
i−   (82) 

In order to get the insight of eI , let be no oscillation prior to first impact, therefore 

 δUrel
i− = 0   (83) 

Equation (82) is simplified to 

 Urel ,s
1+ = 1−eI

*( )Urel ,s
1−   (84) 

If (80) is examined one can find 
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eI =
µi,ef
mi,ef

= m2m3 m2 +m3( )−1

mcmt mc +mt( )−1
= m2 ⋅m3 ⋅ mc +mt( )
mc ⋅mt ⋅ m2 +m3( ) =

m2 ⋅m3 ⋅ m1+m2 +m3+m4( )
m1+m2( )⋅ m3+m4( )⋅ m2 +m3( ) =

= m1m2m3+m2
2m3+m2m3

2 +m2m3m4

m1m2m3+m1m3
2 +m1m2m4 +m1m3m4 +m2

2m3+m2m3
2 +m2

2m4 +m2m3m4
⇒

⇒ eI =
A

A+m1 ⋅m3
2 +m1 ⋅m2 ⋅m4 +m1 ⋅m3 ⋅m4 +m2

2 ⋅m4
≤1

where A=m1 ⋅m2 ⋅m3+m2
2 ⋅m3+m2 ⋅m3

2 +m2 ⋅m3 ⋅m4

and m1,m2,m3,m4 ≥0

 (85) 

Therefore one can deduce that 

 0≤ eI ≤1   (86) 

and 

 0≤µi,ef ≤mi,ef   (87) 

The coefficient eI  plays a significant role in determining whether the Chaser will continue, 

stop or change its direction of motion after an impact. This cannot be predicted using the simple 

rigid body theory, because this theory examines only the bodies under impact (in this case m2  and 

m3 ) without considering the mass ratio between the individual masses of the two multibody 

systems under impact (that is all the masses under consideration m1,m2,m3 and m4 ).  

To examine the significance of the coefficient, assume a perfectly elastic impact occurs 

e* =1( )  and using (81) and (84) 

 Urel ,s
1+ = 1−eI

*( )Urel ,s
1− = 1−2⋅eI( )Urel ,s

1−   (88) 

Using (88), the following different generic cases can be identified: 

a) eI = 0⇒Urel ,s
1+ =Urel ,s

1− : Retaining exactly the same velocity prior and after impact means 

that in fact, no impact has occurred in the first place. This is a limit case of ratio eI . 

b) eI =1⇒µi,ef =mi,ef ⇒Urel ,s
1+ =−Urel ,s

1− : This is another limit case of the ratio eI . In fact it 

resembles an impact between 2 rigid bodies only. The relative velocity of the two systems 

becomes the relative velocity of two simple rigid bodies. 

Both cases (a) and (b) are limit cases which prove the generality of the ratio of effective 

masses concept. 
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c) eI =
1
2
⇒Urel ,s

1+ = 0 : The CoM of the two multibody systems move at the same relative 

velocity after impact. In Sec. 4.3.1 this situation shall be further examined. 

d) 0< eI <
1
2
⇒Urel ,s

1+ ⋅Urel ,s
1− >0 : The CoM of the two multibody systems will have positive 

relative velocity after impact. Practically the Chaser will approach again the Target. This is 

a favourable situation during docking/ capture. 

e) 
1
2
< eI <1⇒Urel ,s

1+ ⋅Urel ,s
1− <0 : The CoM of the two multibody systems will have negative 

relative velocity after impact. Practically the Target will fly away from the Chaser. This 

would prevent docking/ capture. 

The above results prove additionally that the impact behaviour for the impact depends on the 

ratio of the masses, and not on the masses per se. This is in accordance with results presented in 

[84]. 

4.3.1 Further insights for eI  

It is interesting to examine the behaviour of eI  with respect to the ratio of masses between the 

bodies. For this reason the ratios between the masses are defined as 

 λi =
m2

m3

λc =
m1
m2

λt =
m4

m3
  (89) 

therefore eI  becomes 

 

eI =
µi,ef

mi,ef

= m2 ⋅m3

m2 +m3

⋅ m1+m2 +m3+m4

m1+m2( )⋅ m3+m4( )⇒

⇒ eI =
λc +1( )⋅λi + λt +1( )( )

λi +1( )⋅ λc ⋅+1( )⋅ λt +1( )

  (90) 

A number of plots were created for (90) using Mathematica. As it can be seen in Figure 4-6 

and Figure 4-7, large λc  and λt  are (i.e. more massive m1  and m4  respectively) have as a result 

the further approach of the Chaser to the Target (i.e. eI ≤0.5 ). However if m2  and m3  are 

prominent (i.e. λc  and λt  are reduced), the systems tend to reverse the relative velocity after 

impact (i.e. eI ≥0.5 ). In Figure 4-8 one can deduce that as the mass of the Chaser becomes larger 

than the mass of the Target (because λi  increases and λt  remains constant) the systems tend after 

impact to retain an almost zero relative velocity ( eI  tends to zero); however, as the Chaser has 
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analogous or lower mass than the Target, Chaser’s mass ratio plays critical role to the direction of 

the motion after impact. Similar explanations can be found in Figure 4-9, as the mass of the 

Chaser is larger than the mass of the Target (because λi  increases and λc  remains constant). 

 

Figure 4-6. eI  vs Target’s mass ratio, for different Chaser mass ratios and λi = 1 . 

 

Figure 4-7. eI  vs Chaser’s mass ratio, for different Target mass ratios and λi = 1 . 
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Figure 4-8. eI  vs masses under impact ratio, for different Chaser mass ratios and λt = 1 . 

 

Figure 4-9. eI   vs masses under impact ratio, for different Target mass ratios and λc = 1 . 

Equal Mass Ratios of Chaser and Target 

If one assumes that the ratios of the Chaser and the Target are equal (note that the absolute masses 

m1 −m4  and mc ,mt  are not required to be equal), that is 

 λc =λt =λ   (91) 

so that (90) becomes, 
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 eI =
1

λ+1( )
  (92) 

then using (81) and (84), one can find for the first impact 

 

Urel ,s
1+ = 1− 1+e*( )⋅eI( )⋅Urel ,s

1− ⇒

⇒Urel ,s
1+ = 1−

1+e*( )
λ+1( )

⎛
⎝⎜

⎞
⎠⎟
⋅Urel ,s

1− ⇒

⇒Urel ,s
1+ = λ−e*

λ+1
⎛
⎝⎜

⎞
⎠⎟
⋅Urel ,s

1−

  (93) 

The ratio λ  can be only positive; therefore the numerator of (93) can be positive (and the 

systems will continue to move at the same direction because Urel ,s
1+ ⋅Urel ,s

1− >0 ) if and only if the 

ratio of the masses of the bodies λ , as in (91), is larger than the coefficient of restitution. Note 

however that 0≤ e* ≤1  therefore if λ >1  then this situation is trivial because then λ > e*  always. 

In other words (93) must be examined especially when the Target has larger m2  than m1 . Finally 

one can easily see that as the ratio λ  increases, that is  m1≫m2 , the coefficient eI  tends to zero, 

therefore the Chaser keeps its direction after impact and the relative velocity of the systems is 

decreased partly. 

Impact of three masses 

In case either the Chaser or the Target cannot be modeled with more than one mass, then either 

m1 = 0  or m4 = 0 . In this case λc = 0  or λt = 0  correspondingly. Let examine the case that the 

Target is one mass only. Using (90) one can find that 

 eI =
λc +1( )⋅λi +1( )
λi +1( )⋅ λc ⋅+1( )

  (94) 

Plotting this function, Figure 4-10, it can be seen that there is high tendency for the systems 

to change the direction of relative velocity (as eI >0.5 ) which is reasonable if it is considered that 

the whole energy of the impact of the Target is received only by one mass, and there is no spring or 

other mass to withstand the impulse. Therefore the only case that the systems retain their initial 

direction of relative velocity is in the case the Target is much more larger that the mass under 

impact from the side of the Chaser. 

On the other hand if between the Chaser masses the spring is infinitely stiff or there is no 

flexibility, then (90) yields  

 eI =
1

λi +1( )
  (95) 
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Figure 4-10. Impact of three masses, where the Target is only one mass. 

Apparently (95) is similar to (92), with a different mass ratio. Thus, as the Chaser becomes larger it 

tends to retain its initial velocity. 

Impact with a small mass connected to a very large mass 

Another extreme case is when m4  models a very large mass, like a fixed wall. Let m4→+∞ . 

This time it is better to solve again (90) and take into account that 

 m4 >>m1,m2,m3   (96) 

which means that 

 

eI =
µi,ef

mi,ef

= m2 ⋅m3

m2 +m3

⋅ m1+m2 +m3+m4

m1+m2( )⋅ m3+m4( )⇒

⇒ eI =
m2 ⋅m3

m2 +m3

⋅ m4

m1+m2( )⋅m4

= m2 ⋅m3

m2 +m3

⋅ 1
m1+m2( )⇒

⇒ eI =
µi,ef

m1+m2( ) =
µi,ef

mc

  (97) 

By substituting the mass ratios from (89), it can be found that: 

 eI =
1

λi +1( )⋅ λc ⋅+1( )
  (98) 

In other words the larger the Chaser, the higher the relative velocity is, following an impact 

with respect to the relative velocity prior to the impact. Plotting this function, Figure 4-11, it can 
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be seen that after impact the systems in general retain the initial direction of the relative velocity, 

except in cases where the Chaser has a larger mass under impact and/or the mass connected to the 

wall has about the same mass as the Chaser. 

 

Figure 4-11. Impact with a Target which is comprised by a small mass connected to a very large mass. 

Zero post-impact relative velocity 

As Figure 4-6 and Figure 4-7 show, in some cases the relative velocity after impact can be zeroed 

( eI = 0.5 ) leading to a favourable situation. In fact, if this can be achieved, then the CoM of 

Chaser and the Target can assume zero relative velocity which is favourable to a space operation. 

In this case both systems will remain at a constant distance between; realistically this means that 

their relative velocity will be almost zero, thus the docking/ capture will exert lower reactions. 

Equating eI  in (90) with 0.5, 

 
eI =

λc +1( )⋅λi + λt +1( )( )
λi +1( )⋅ λc ⋅+1( )⋅ λt +1( ) =

1
2
⇒

⇒λc ⋅λi −λc ⋅λi ⋅λt +λi +λt −λc ⋅λt −λc −λt ⋅λi +1= 0
 (99) 

Three cases result: 

i. If λc = c  and known then, 

 λi ⋅ c+1( )⋅ 1−λt( )+ 1−c( )⋅ λt +1( )= 0  (100) 

which is presented in Figure 4-12. As it can be seen, if the mass ratio of the Chaser is unity, 

λc = 1 , then if the mass ratio of the Target is also unity, λt = 1 , it does not matter what is the mass 
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ratio between the systems themselves. However in general, it is obvious that in order to find a 

relation of the mass ratios that would zero the post impact relative velocity, the following must 

apply as Figure 4-12 shows: if the mass ratio of the Chaser is larger than one, then the mass ratio 

of the Target should be less than one, and vice versa. 

 

Figure 4-12. Mass ratio combinations which zero relative velocity after impact if the mass ratio of Chaser is 

known. 

ii. If λi = c  and known then, 
 c−1( )⋅ λc −λt( )+ 1+c( )⋅ 1−λc ⋅λt( )= 0  (101) 

which is presented in Figure 4-13. Again it is obvious that there is a qualitative reciprocity 

between the mass ratios of Chaser and Target. 

iii. If λt = c  and known then, 

 λi ⋅ 1− c( ) ⋅ λc +1( ) + 1+ c( ) ⋅ 1− λc( ) = 0  (102) 

which leads to Figure 4-14. Qualitative reciprocity of the mass ratios between Chaser and Target 

is again evident. The results of the first case (Chaser mass ratio known) are also valid here. 

0 2 4 6 8 10
0

2

4

6

8

10

12

14

λc = 1

2
5

0.1

0.5

λi

λ t

Mass Ratio of Bodies Under Impact

M
as

s R
at

io
 o

f T
ar

ge
t



PhD Thesis  Capture of Orbital Space Systems by Robots  Iosif S. Paraskevas 

CSL 100 NTUA - 2015 

 

Figure 4-13. Mass ratio combinations which zero relative velocity after impact if the mass ratio of masses 

under impact is known. 

 

Figure 4-14. Mass ratio combinations which zero relative velocity after impact if the mass ratio of Target is 

known. 
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Varying Mass Ratios 

In the next Table 4-1, the results of the previous analysis are summarized. In Table 4-2 the 

special cases are also presented. Using this tables, a designer (of a system or a controller) will be 

able to assess the results of an impact between two multibody systems; it will be much faster to 

examine whether an impact will result in further approaching of the two multibody systems or not, 

and in case some parameteres can be altered on-line, e.g. the compliance of appropriate joints in 

order to alter the ratio λc  (see for example Sec. 4.2.3), then an impact which would lead to 

eI →0.5  could be achieved, and thus a smaller tendency between the Chaser and Target to move 

apart after the impact. 

Table 4-1. Effect of masses on the eI . 

 
 

  

Chaser Bodies Under Impact Target 

   Decrease 

   Increase 

   Tends to 0.5 

   Decrease 

   Increase 

   Decrease 

   Increase 

   Tends to 0.5 

 

Table 4-2. Calculation of eI  in special cases. 

    
Mass ratio for 

Chaser 
Mass ratio for Bodies 

Under Impact 
Mass ratio for 

Target 

   
 

0    

m1 m2 m3m2 m3 m4

eI

 m1  m2 m2 = m3  m4  m3

 m1  m2 m2 = m3  m4  m3

 m1  or m2  m2  m3 m4 = m3

 m1  m2  m2  m3 m4 = m3

 m1  m2  m2  m3 m4 = m3

m1 = m2  m2  m3  m4  m3

m1 = m2  m2  m3  m4  m3

m1 = m2  m2  m3  m4  or m3

m1 m2 m3m2 m3 m4

eI

λ λi λ
1

λ +1( )

λi λt
1

λi +1( )
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  0 
 

   
 

c   
0.5 if Eq. (100) 

applies 

 c  
0.5 if Eq. (101) 

applies 

  c 
0.5 if Eq. (102) 

applies 
 

4.4 Discussion on Latching and Capture 

4.4.1 Introduction of the latch concept 

In this chapter a brief discussion on the latch concept and related issues will take place. As this is 

an ongoing work, this discussion aims on setting some insights on the challenges. Thus we study 

the case of a Chaser that must capture a Target, at a specific point, using a latch system. The 

question is wether this is possible for known systems and the challenges arise from the fact that 

both systems, the Chaser and the Target, are free floating systems. Additionally this procedure 

should be made without using any grasping system, that is the robotic arm of the Chaser should not 

use a grapple. The questions to be answered include: 

1. How fast this operation should be made? 

2. What is the relationship between the masses of the systems in order to achieve 

latching? 

3. What is the relationship between the system stiffness and damping characteristics 

for a successful latch? 

Latching in the Generic system 

Let a system of two masses m  (Target’s latching Front End) and M  (Target), which is at rest at 

the beginning of the procedure, see Figure 4-15. In order for the Chaser’s probe to latch with the 

target in one impact, it must reach a point B selected by design; Point A is the point of free length 

of the spring, therefore the oscillation of m  with respect to M  will be around this point. Just after 

the impact m  will move towards positive x-axis. While m  is between points A and B, the probe 

cannot reach point B without impacting again m . While m  is between points B and C, the probe 

should reach point B in order to latch. In other words, considering the oscillatory motion of m , in 

order for the probe to latch, the available time window is 

λc λi
λc +1( ) ⋅λi +1( )
λi +1( ) ⋅ λc ⋅+1( )

λc λi +∞
1

λi +1( ) ⋅ λc ⋅+1( )

λi λt

λc λt

λc λi
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 0≤ tBmin ≤T 4 ≤ tBmax ≤
T
2   (103) 

where T  is the period of the oscillation of mass m , tBmin  and tBmax  is the minimum and 

maximum time respectively to achieve latching without having a new impact with m , during 

which would render the latching impossible, see also Figure 4-16. Minimum and maximum time 

also depend on the distance between points A and B, which is a design aspect. Note that in the 

presence of damping T  is the damped periodic time. 

According to (50) the maximum undamped elongation umax  of the spring is  

 umax =
Pi

m⋅ω 0

  (104) 

 

Figure 4-15. Characteristic points during motion of the latching system. 

 

Figure 4-16. Time frame for possible latching. 

therefore 

 uB =umax ⋅exp −ζ ⋅ω 0 ⋅tB( )⋅sin ω 0 ⋅tB( )   (105) 

This equation should be solved for tB . However (105) does not have an analytical solution, 

and should be solved numerically. As the damping factor tends to zero, the roots for tB  are 

Target

A B C

Probe

Latch

Latching
Point

V

umax

u

Point B

ttmin tmax

Latch possible

New impact
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infinite; however only the first two roots are of interest to us, corresponding to the motion of the 

probe from A to C and back to A just after the first impact. On the other hand if the damping is 

ignored, one can find an analytical solution for (105), which is 

 tBmin =
1
ω
⋅arcsin uB

umax
⎛
⎝⎜

⎞
⎠⎟

  (106) 

 tBmax =π − 1
ω
⋅arcsin uB

umax
⎛
⎝⎜

⎞
⎠⎟

  (107) 

Note however that the position B is a design parameter. In other words, the design 

characteristics of the probe, should be considered for the distance of point B 

4.4.2 Requirements for Latching at First Impact 

Introduction 

In order to understand the requirements for latching at first impact, it is necessary to understand 

exactly the nature of the latching process. In this discussion it is essential to have two things in 

mind: 

i. Neither the Target nor the Chaser are fixed on a wall or on a floor. This situation has an 

instant implication: the impact cannot take a lot of time, because as the probe “pushes” the 

latch, it also “pushes” the CoM of the Target, and therefore a translational impulse which 

tends to “push away” the Chaser is getting larger. Strictly speaking, the integral of the 

impact force (impulse) from time 0 to time t f  when the impact ends, increases as t f  

increases; thus the CoM of the Target is constantly accelerated during the impact duration. 

ii. During impact, by nature, the bodies under impact intend to move away one from each 

other, just immediately after the impact, except if another force pushes them back. This 

rule cannot be disregarded. In other words if two bodies come to an impact, a restitution 

phase will drive them away. The existence of another mass (in this work shown as m1  for 

the Chaser and m4  for the Target) connected with the masses under impact via lumped 

elements (springs and dampers) provide the inertia characteristics that prevent the total 

systems to initially move away from each other in some degree according to the 

parameters. 

Let us now consider two extreme cases. First, let us assume that on the Chaser there is a 

manipulator, with a very soft end-effector. It is easy to imagine that even if the whole system has a 

large velocity, the required impulse to “push” the latch cannot develop (not enough impulse will be 

developed to force the latch and its spring to move for a predetermined distance). In the second 

case, consider a very stiff material at the End-Effector, but now the Chaser and/or the manipulator 
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is moving slowly. Again no impulse can be created to “push” enough the latch. The problem here 

is related with note (i) above: the larger the duration of the impact, the larger the impulse to the 

CoM of the Target, which tends to move further. 

The previous mental pictures, point to the requirements for latch. In fact, the impact should 

be enough to “push” the latch past the latching point B, see again Figure 4-15. That is, the impulse 

to be created should be properly selected via the systems relative velocities. Secondly the post-

impact velocities of the systems and the velocity of the probe must be such that the probe will 

reach the latching point B while (107) applies. That is the Chaser should be fast enough to reach 

the point before the Target gets away, and the probe should be faster than m3 . In case one wishes 

the latch to be completed in a single impact, the probe should be faster than m3  but not so fast, 

that result in reaching m3  again before m2  passes the latching point B.  

Impulse and Maximum Elongation 

The first requirement for a succesful impact is the maximum retraction (elongation) of the spring 

of the Target. This is directly connected with the developed impulse, which must be such that the 

maximum elongation is larger than the latching distance llatch , see distance AB in Figure 4-15, 

which has been selected by the designer and incorporates the distance of the latching point on the 

Target and the size of the part of the probe which should pass the latching point. Apparently by 

choosing a maximum elongation near to the latching distance, one minimizes the time window 

when the latch could take place, still it is necessary as a reference number. Thus the requirement is 

 umax ≥ llatch   (108) 

Using (104) one has 

 

umax ≥ llatch⇒
Pi

m3 ⋅ω t

⋅Dt ≥ llatch⇒
1+e*( )⋅Urel ,i

i− ⋅µi

m3 ⋅ω t

⋅Dt ≥ llatch⇒

⇒Urel ,i
i− ≥ m3 ⋅ω t ⋅llatch

1+e*( )⋅µi

⋅ 1
Dt

= m3 ⋅llatch
1+e*( )⋅µimp

⋅ kt
µt

⋅ 1
Dt

  (109) 

Note that e*  refers to the coefficient of restitution between the bodies under impact and Dt  to the 

internal damping characteristics between the masses of the Target. Apparently, the larger the 

latching distance llatch , the Target’ s mass under impact or the stiffness of the Target’ s spring are, 

the higher impact velocity is necessary. On the other hand as e*  and Dt  decrease, the impact 

velocity should be increased further. This is reasonable and in accordance to experience. 

Example 

Let a Chaser and a Target with the following characteristics: 
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m1 =100kg, m2 =10kg, m3 =1kg, m4 =10kg

Kt =1000N m, Urel ,i
1− = 0.05m s , c= 0, e* = 0.9

  (110) 

What should be the latching distance to achieve latching? Interestingly if (109) is being used, one 

can find that 

 llatch ≤0.0026m   (111) 

which means that the latching distance  cannot be greater than 2.6mm in this case. However 

suppose that the latching distance is 0.01m. Using (109) again it can be found that the initial 

relative velocity should be 0.192m s , which is a speed higher than the usual speeds during the 

final phase of a docking operation. A very robust controller is needed to perform this operation 

with great accuracy. This example points the difficulties of latching in free-floating systems. 

4.5 Verification in MATLAB/Simulink 

4.5.1 Description of Simulations 

In order to verify the proposed RMIT theory, a MATLAB/ Simulink model has been created. To 

test the validity of the propositions, the model is fully analytical. Each system (Chaser and Target) 

has been modeled as a 2-mass spring-damper system. The contact forces between the bodies under 

impact are calculated using the KV model (for simplification of the process). In particular the 

impact is modelled by a spring-damper system which can only be compressed. As the simulation 

advances, Simulink calculates the velocities of the masses under impact, and their interpenetration. 

This interpenetration feeds the contact model and a force is developed which pushes away the 

masses under impact. Therefore prior and after the impact, the simulation presents two 2-body 

systems, and during impact a 4-body system. No equation stemming from the proposed RMIT was 

used to obtain independent results. Thus the validity of the proposed theory is examined via a 

complete visco-elastic theoretical formulation. 

Ιn the Simulink blocks, see Appendix B, the user can set the magnitude of all 

masses, the initial velocity of the Chaser (the Target is assumed still with respect to the Chaser at 

the start of the simulation, without loss of generality), and the stiffness and damping coefficients of 

all springs and dampers, including the contact stiffness and damping, according to the impact 

model (i.e. here KV). The user can also change other initial parameters of the bodies, however, 

except for the initial velocity of the Chaser (m1  and m2  have the same velocity, therefore the 

internal spring and damper of the Chaser produce no internal forces at the beginning of each 

simulation run) and its initial position, all other values are set to zero. 
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4.5.2 Verification of RMIT 

In order to verify the theoretical calculations of post-impact relative velocity between Chaser and 

Target, in relation to the pre-impact corresponding velocity, various configurations were examined. 

Αll simulations proved the validity of the proposed theory. In the runs, the masses considered 

were: A) the masses of the robotic systems of the CSL emulator, B) All masses equal and C) and 

D) random masses. Table 4-3 presents these values and the calculations according to (84). Figure 

4-17 shows the relative velocities of all cases. Only the first impact (which is of interest) is shown 

for each example. It can be seen that in all cases the theoretical model finds the post-impact 

relative velocity with high accuracy. Note that the stiffnesses have been selected low in order to 

obtain clearer plots; however with higher stiffnesses the results are the same, and the only 

difference is the duration of the impact. Note that only the relative magnitude of the system’ s 

stiffnesses with respect to the contact stiffness is of interest. The damping was set to zero, in order 

to examine the validity of the RMIT proposition in elastic impacts. 

Table 4-3. Data and results of the first set of simulations. 

Property Example 

A 

Example 

B 

Example 

C 

Example 

D 

m1  (kg)  17 10 5 100 

m2  (kg)  2 10 50 20 

m3  (kg)  1.5 10 10 10 

m4  (kg)  15 10 100 200 

Contact Stiffness  (N /m)  1000 1000 1000 1000 

Chaser Stiffness  (N /m)  15000 15000 15000 15000 

Target Stiffness  (N /m)  200 200 200 200 

Initial Rel. Velocity  (m / s)  0.05 0.05 0.05 0.05 

Final Rel. Velocity (Eq. 33)  (m / s)  0.0403 0 0.02728 0.0413 

Final Rel. Velocity (sim)  (m / s)  0.0402 -0.000476 0.02715 0.0412 

Absolute Error  (m / s)  0.0001 0.000476 0.00013 0.0001 

Relative Error (%) 0.25 - 0.48 0.24 

 

Another interesting comparison, Examples E1-E3, is obtained by using the same masses, but 

with different stiffnesses. As shown in Figure 4-18, the duration of the impacts change (which is 

reasonable) but not the final value of the relative velocity of the systems after impact. The full 

sequence of impacts is not presented.  
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Figure 4-17. Relative velocities between Chaser and Target after first impact. Examples A-D. 

Another limiting case is presented, Example F. It resembles a small chaser consisting of two 

equal small masses, which hits a wall of (practically) infinite mass (the last mass m4  is used only 

to avoid zeroing the denominator in simulations). According to the theory, the relative velocity for 

the first impact should be close to zero for an elastic impact (thus no the coefficinet of restitution is 

unity). This is confirmed (an error is expected due to round-off erors), Figure 4-19. 

Table 4-4. Data and results of the second set of simulations. 

Property Example 

E1 

Example 

E2 

Example 

E3 

Example 

F 

m1  (kg)  17 17 17 10 

m2  (kg)  2 2 2 10 

m3  (kg)  1.5 1.5 1.5 10000000 

m4  (kg)  15 15 15 1 

Contact Stiffness  (N /m)  10 100 10000 1000 

Chaser Stiffness  (N /m)  150 15000 1500000 15000 

Target Stiffness  (N /m)  2 20 2000 500 

Initial Rel. Velocity  (m / s)  0.05 0.05 0.05 0.05 

Final Rel. Vel. (Eq. 33)  (m / s)  0.0403 0.0403 0.0403 0 

Final Rel. Velocity (sim)  (m / s)  0.0402 0.04029 0.04029 -0.00167 

Absolute Error  (m / s)  0.0001 0.00001 0.00001 -0.00167 

Relative Error (%) 0.25 0.025 0.025 - 
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Figure 4-18. Relative velocities between Chaser and Target after first impact. Examples E. 

 

Figure 4-19. Relative velocity between Chaser and Target after first impact. Example F. 
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